This exam has 7 questions, for a total of 100 points. Answer the questions in the space provided below. Show your work and simplify your answers to receive full credit. **You may use a calculator, but show work to receive full credit.** You have 50 minutes.

1. (a) Locate the critical points of \(f(x) = \frac{2}{3}x^3 - 4x^2 + 6x \)

(b) Find the intervals on which \(f \) is increasing and decreasing.

(c) Find the intervals on which \(f \) is concave up and concave down

(d) Identify the local minimum and local maximum values of \(f \).

(e) Identify the absolute minimum and maximum values of \(f \) on \([-1, 2]\).
2. Use L'Hopital’s Rule to evaluate $\lim_{w \to 1} \frac{w^\pi - 1}{\pi^2 w - \pi^2}$.
3. Sketch a single function satisfying the following set of conditions:

\[f''(x) < 0 \text{ on } (-5, 0), \]
\[f''(x) > 0 \text{ on } (0, 5), \]
\[f'(x) > 0 \text{ on } (-5, 5), \]
and \(f(0) = 1 \).
4. Does the Mean Value Theorem apply to the function \(f(x) = \frac{1}{x} \) over the interval \([1, 3]\)? Why or why not? You must use complete sentences in your explanations. If the MVT does apply, find the value \(c \) it guarantees exists.
5. Find numbers x and y satisfying the equation $7x - 2y = 13$ such that the product of x and y is as small as possible. Give exact answers.
6. Find an antiderivative of each of the following:

(a) \(\frac{1}{1 + x^2} \)

(b) \((x^2 + 1)x^{1/2}\)
7. Find the following:

(a) \(\int e^{5x} \, dx \)

(b) \(\int (x + 2)(x + 3) \, dx \)